Если придерживаться старой догмы генетического кода, логично думать, что две разные аминокислоты, шифруемые двумя одинаковыми (третий не важен) нуклеотидами кодонов иРНК, будут с равной вероятностью включаться в пептидную цепь, т.е. случайно. И таких парных неоднозначностей даже в немитохондриальном коде насчитывается шесть, если не считать еще две по стоповым кодонам (они же «нонсенс” или бессмысленные). Так что же, существует «индульгенция разрешения” частых и случайных замен аминокислот при синтезе белков? Однако, известно, что такие случайные замены в большинстве случаев имеют самые отрицательные последствия для организма (серповидная анемия, талассемии и т.д.). Налицо явное противоречие: нужна точность (однозначность) отношений «знак-обозначаемое” (кодон-аминокислота), а придуманный людьми код ее не обеспечивает. Поэтому существующее и общепринятое представление о ключевых (знаковых) механизмах синтеза белков нуждается в дополнительном анализе. В связи с этим более подробно рассмотрим предложенные в 60-х годах принципы генетического кодирования. Как оценили перечисленные и очевидные странности ведущие авторы теории и экспериментов в этой области — Ф.Крик, М.Ниренберг и их последователи?
Основной узел противоречий — неоднозначные соответствия (кодон-аминокислота) приведены в таблице:
g40
Видно, что пары разных аминокислот шифруются одинаковыми значимыми дублетами кодоновых нуклеотидов («воблирующие” мало значимые, по Крику [4], и вообще нечитаемые, по Лагерквисту [11], нуклеотиды смещены в индекс). В терминах лингвистики это явление носит название омонимия, когда одни и те же слова имеют разный смысл (например, русские слова «лук”, «коса” или английские «box”, «ring” и т.п.). С другой стороны, избыточные различающиеся кодоны, обозначающие одни и те же аминокислоты, уже давно рассматривают как синонимичные. В отношении омонимии генетического кода высказывания в литературе нам не известны. Таким образом, если считать дублетно-триплетные кодоны «словами”, то сам код является, кроме прочего, двумерным, то есть омонимо-синонимичным. По этим измерениям код распадается, как это видно из таблицы, в основном, на парные семейства, избыточно, но не однозначно, шифрующие разные аминокислоты. И только в двух случаях из шести омонимичные дублеты обозначают близкие по структуре и функции аминокислоты (аспарагиновая-глутаминовая и аспарагин-лизин). Следовательно, при неоднозначном (ошибочном) выборе аминокислот высока вероятность синтеза аномальных белков, если следовать логике общепринятой модели кода. Большинство этих сомнений и наметок на будущее в мягкой форме уже прозвучало в обобщающей статье Ф.Крика и М.Ниренберга «Генетический код”[1].
Процитируем авторов дословно ввиду стратегической важности обсуждаемых принципов генетического кодирования: с.133: «белок … является как бы длинным предложением, записанным с помощью двадцати букв”. Вот одно из первых и плодотворных сравнений белков, а затем и ДНК, с текстами естественных языков, сравнений, повсеместно принятых на первых порах лишь как метафора, а затем развитых и формализованных нами в качестве квази-речевых образований [14,25,26,29]. В этой замечательной аналогии зачаток будущего выхода из плоского и тупикового понимания природы генов, предтеча понятия образных кодов (слово как образ), а это согласуется с идеями Гурвича, Любищева и Беклемишева, которые также видели в хромосомах потенциальные волновые образные и даже эстетические структуры в качестве организующих биосистему начал.