Волновой генетический код

Ранее нами предложена гипотеза эпигенетической кодовой иерархии уровней организации хромосомной ДНК, рибосом и внеклеточных матриксов высших биосистем и участия их в синтезе волновых образных фрактальных построений, используемых высшими биосистемами для собственной самоорганизации [25].
Нелинейная динамика (акустика) и связанные с ней электромагнитные излучения указанных биоструктур in vivo не случайны, взаимно коррелированы, носят биознаковый (в частности, речеподобный) характер, изоморфно отображают структурно-функциональные состояния каждой из обменивающихся волновыми сигналами организменных клеточно-тканевых подсистем. В пространстве-времени организмов в эпигенетическом режиме происходит обмен информацией по физическим каналам нелинейных акустическими электромагнитных колебаний. при этом стратегической компонентой рассматриваемых волновых знаковых рядов является акустическое и электромагнитное излучение совокупного генетического материала (генома) биосистем. В настоящей работе выдвинутые положения развиваются как трактовка волновых состояний (собственных физических полей) организма и попытка понимания биологического смысла явления генерации внутри и межклеточных полевых сигналов в качестве основы волновой и, вслед за этим, вещественной самоорганизации живых систем. ПЕРЕСМОТР МОДЕЛИ ГЕНЕТИЧЕСКОГО КОДАВ настоящее время создалась парадоксальная ситуация с моделью генетического кода — вершиной достижений молекулярной биологии 60-х годов.
Точность кодирования последовательностей аминокислот белков в этой модели странным образом уживается с двойной вырожденностью предлагаемого «кода” по линиям избытка транспортных РНК (тРНК) по сравнению с числом аминокислот и неоднозначного соответствия кодон-антикодон, когда только двум (а не трем) нуклеотидам триплетов иРНК необходимо точное спаривание c антикодоновой парой нуклеотидов тРНК, а по третьему нуклеотиду природой допускается неверное спаривание, так называемое «воблирование” (от англ. слова «wobble”- качание) по гипотезе Ф.Крика [4]. Это означает, что некоторые антикодоны могут «узнавать” более одного кодона в зависимости от того, какое основание находится в 1-м положении антикодона, соответствующем 3-му положению нуклеотида с учетом их антипараллельного комплементарного взаимодействия. «Узнавание” такого рода «неправильное”, если следовать парадигме генетического кода, поскольку возникают неканонические пары оснований «Аденин-Гуанин”, «Урацил-Цитозин” и другие с энергетически невыгодными водородными связями. «Код”, особенно митохондриальный, становится настолько вырожденным, и логически следующий отсюда произвол включения аминокислот в пептидную цепь столь велик, что как бы исчезает само понятие генетического кодирования.
Процитируем высказывание из книги Альбертса, Уотсона и др. «Молекулярная биология клетки” [20] (глава с характерным названием «Геном митохондрий имеет ряд поразительных особенностей”): «…в митохондриях обычные правила спаривания кодонов с антикодонами соблюдаются менее строго, и многие молекулы тРНК способны узнавать любой из четырех нуклеотидов в третьей (неоднозначной) позиции”[6]. Вот эта «меньшая строгость”, как будто бы несовместимая с реально существующим метаболическим контролем порядка чередования аминокислот в белках, заслуживает пристального внимания. «Меньшая строгость” не случайна, более того, она для чего-то нужна биосистемам. Точность белкового синтеза эволюционно консервативна и высока, но может ли она достигаться такого рода «тайнописью”, когда «знак” (кодон) и «обозначаемое” (аминокислота) не всегда изоморфны, не однозначны?